首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128976篇
  免费   13949篇
  国内免费   5345篇
工业技术   148270篇
  2024年   249篇
  2023年   1414篇
  2022年   2749篇
  2021年   3388篇
  2020年   3783篇
  2019年   3055篇
  2018年   2723篇
  2017年   3868篇
  2016年   4280篇
  2015年   4879篇
  2014年   8773篇
  2013年   7178篇
  2012年   10096篇
  2011年   10850篇
  2010年   8159篇
  2009年   8145篇
  2008年   7880篇
  2007年   9452篇
  2006年   8648篇
  2005年   7065篇
  2004年   5838篇
  2003年   5030篇
  2002年   4006篇
  2001年   3368篇
  2000年   2805篇
  1999年   2095篇
  1998年   1408篇
  1997年   1194篇
  1996年   1138篇
  1995年   971篇
  1994年   808篇
  1993年   520篇
  1992年   467篇
  1991年   316篇
  1990年   265篇
  1989年   264篇
  1988年   175篇
  1987年   126篇
  1986年   109篇
  1985年   125篇
  1984年   117篇
  1983年   97篇
  1982年   81篇
  1981年   69篇
  1980年   39篇
  1979年   31篇
  1978年   24篇
  1977年   18篇
  1976年   13篇
  1959年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We propose a self-sustaining power supply system consisting of a “Hybrid Energy Storage System (HESS)” and renewable energy sources to ensure a stable supply of high-quality power in remote islands. The configuration of the self-sustaining power supply system that can utilize renewable energy sources effectively on remote islands where the installation area is limited is investigated. It is found that it is important to select renewable energy sources whose output power curve is close to the load curve to improve the efficiency of the system. The operation methods that can increase the cost-effectiveness of the self-sustaining power supply system are also investigated. It is clarified that it is important for increasing the cost effectiveness of the self-sustaining power supply system to operate the HESS with a smaller capacity of its components by setting upper limits on the output power of the renewable energy sources and cutting the infrequent generated power.  相似文献   
2.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
3.
In the present investigation, systematic grinding experiments were conducted in a laboratory ball mill to determine the breakage properties of low-grade PGE bearing chromite ore. The population balance modeling technique was used to study the breakage parameters such as primary breakage distribution (Bi, j) and the specific rates of breakage (Si). The breakage and selection function values were determined for six feed sizes. The results stated that the breakage follows the first-order grinding kinetics for all the feed sizes. It was observed that the coarser feed sizes exhibit higher selection function values than the finer feed size. Further, an artificial neural network was used to predict breakage characteristics of low-grade PGE bearing chromite ore. The predicted results obtained from the neural network modeling were close to the experimental results with a correlation of determination R2 = 0.99 for both product size and selection function.  相似文献   
4.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   
5.
The exploration of the high thermal stability near-infrared (NIR) phosphors is significantly crucial for the development of plant lighting. However, NIR phosphors suffer from the poor chemical and thermal stability, which severely limits their long-term operation. Here, the successful improvement of luminous intensity (149.5%) and thermal stability at 423 K of Zn3Ga2GeO8 (ZGGO): Cr3+ phosphors is achieved for the introduction of Al3+ ions into the host. The release of carriers in deep traps inhibits the emission loss for the thermal disturbance. Furthermore, an NIR light emitting diodes (LEDs) lamp is explored by combining the optimized Zn3Ga1.1675Al0.8GeO8: 0.0325Cr3+ phosphors with a commercial 460 nm blue chip, and the emission band can match well with the absorption bands of photosynthetic pigments and the phytochrome (PR and PFR) of plants. The explored LEDs lamp further determines the growth and the pheromone content of the involved plants for the participation of the NIR emission originated from Cr3+ ions. Our work provides a promising NIR lamp as plant light with improved thermal stability for long-term operation.  相似文献   
6.
7.
Phosphors-converted LEDs (pc-LEDs) are excellent artificial light sources for indoor plant cultivation, in which the far-red-emitting component (700−780 nm) plays an important role in regulating the photomorphogenesis of plants. Accordingly, highly efficient and thermally stable far-red-emitting phosphors are indispensable for developing high-performance plant cultivation pc-LEDs. Herein, far-red-emitting YAl3(BO3)4:Cr3+ (YAB:Cr3+) phosphors were synthesized by solid-state reaction, and their photoluminescence characteristics, thermal quenching, quantum yield (QY), and application in pc-LEDs were systematically investigated. The YAB:Cr3+ phosphor has an intense broadband absorption to the blue light, simultaneously exhibiting the sharp-line 2E emission and the broadband T2 emission of Cr3+ with a QY of ~86.7%. The far-red broadband emissions of YAB:Cr3+ centered at ~735 nm show a high resemblance to the active-state (PFR) absorption of plant phytochrome. Moreover, the YAB:Cr3+ phosphor shows the thermally enhanced luminescence at temperatures of 303−393 K and the near-zero thermal quenching up to 423 K. The anomalous thermal enhancement is attributed to the temperature-dependent repopulation between 2E and T2 states. Finally, a pc-LED device was fabricated with the YAB:Cr3+ phosphor and blue chip, exhibiting the light out power of ~50.6 mW and energy conversion efficiency of ~17.4% at 100 mA drive current, respectively. The exceptional PL features including suitable excitation/emission wavelengths, suppressed thermal quenching and high QY make YAB:Cr3+ phosphors very promising for applications in plant growth pc-LEDs.  相似文献   
8.
多堆厂址一级概率安全评价(PSA)研究中,机组数目的增加使得建模工作量剧增,给整个核电厂的风险评估带来困难。结合已有基础,本文研究了多堆厂址始发事件分析的筛选方法,提出利用堆芯损伤频率(CDF)上下限值评估方法,分析厂址内不同机组数对厂址CDF的影响。结果表明,双机组厂址适合优先进行具体分析。针对双机组核电站,对多堆厂址内各始发事件进行筛选。结果表明,丧失厂外电、丧失热阱等事件适合建模分析,并对其他筛选结果给出后续分析建议,为多堆厂址一级PSA后续事故序列建模工作提供了重要基础。  相似文献   
9.
A sustainable power source is a key technical challenge for practical applications of electrically responsive soft robots, especially the required voltage is over several thousand volts. Here, a practicable new technology, triboelectric soft robot (TESR) system with the primary characteristics of power source from mechanical energy, is developed. At its heart is TESR with bioinspired architectures made of soft-deformable body and two triboelectric adhesion feet, which is driven and accurately controlled through triboelectric effect, while reaching maximum crawling speeds of 14.9 mm s−1 on the acrylic surface. The characteristics of the TESR, including displacement and force, are tested and simulated under the power of a rotary freestanding triboelectric nanogenerator (RF-TENG). Crawling of TESR is successfully realized on different materials surfaces and different angle slopes under the driven of RF-TENG. Furthermore, a real-time visual monitoring platform, in which TESR carries a micro camera to transmit images in a long narrow tunnel, is also achieved successfully, indicating that it can be used for fast diagnosis in an area inaccessible to human beings in the future. This study offers a new insight into the sustainable power source technologies suitable for electrically responsive soft robots and contributes to expanding the applicability of TENGs.  相似文献   
10.
《Ceramics International》2022,48(12):17412-17424
The aim of this study is to investigate the physicochemical and thermophysical properties of CaO–TiO2–SiO2–Na3AlF6 based electrode coating developed for the welding of advanced ultra-supercritical (AUSC) thermal power plant components. The extreme vertices approach has been used to create twenty-six electrode coating compositions. Various physicochemical and thermophysical properties were characterized using experiments. The coating properties are essential in ensuring sound weld with desirable in-service performance. The developed coating's structural behavior was analyzed using Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD). In addition, regression analysis was carried out to evaluate the influence of coating constituents. Individual constituents and their interaction were found to have a prominent role in influencing the physicochemical and thermophysical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号